2- Good Laboratory Practices for Next-Generation Sequencing DARRELL L. DINWIDDIE, PHD DARYL B. DOMMAN, PHD

Updates/Reminders

Optional Office Hours

- Thursday Morning, 1 hour
- Questions & Discussions on previous or upcoming topics

Upcoming Topics

- Week 3- Introduction to NGS Data and File types- Dr. Domman
- Week 4- Introduction to working on the command line and virtual machine- Dr. Domman

Which Protocols to Cover in Depth?

Illumina

- SARS-CoV-2
 - AmpliSeq
 - COVIDSeq
 - Respiratory virus oligo panel v2
 - SWIFT/IDT, Qiagen
- Bacterial
 - Nextera XT/DNA Prep
 - 16S rRNA

ONT

- SARS-CoV-2
 - ARTIC/Midnight- Ligation
 - Midnight-Rapid Barcoding
- Bacterial
 - Shotgun whole genome-short & long read
 - ► 16S rRNA
- Direct RNA
 - RNA viruses

Schedule Changes?

Current Schedule

- Week 5 (March 15)- Overview of laboratory protocols for pathogen sequencing (non SARS-CoV-2)
- Week 7 (March 29)- Illumina based SARS-CoV-2 genome sequencing protocols
- Week 9 (April 12)- Nanopore based SARS-CoV-2 genome sequencing protocols

Proposed Schedule

- Week 5 (March 15)- Illumina based SARS-CoV-2 genome sequencing protocols
- Week 7 (March 29)- Nanopore based SARS-CoV-2 genome sequencing protocols
- Week 9 (April 12)- Overview of laboratory protocols for pathogen sequencing (non SARS-CoV-2)

Abbreviations

- ONT- Oxford Nanopore Technologies
- PCR- Polymerase Chain Reaction
- VTM- Viral Transport Media
- RIN- RNA Integrity Number
- QC- Quality Control

Sequencing Read Length

The number of nucleotides that are being sequenced.

- For Illumina sequencing this is determined by the number of cycles of sequencing performed & the sequencing kit. Read lengths are all the same.
- For ONT sequencing this is dependent on the nucleotide length of the sample, library prep method, & nanopore function. Read length can be different for each sequencing read.

17bp TTCGGCTAGCTTGCAGC

23bp AGCIICAIGAIGGGCCAAAIIII

31bp CCAAATTTTCTAGAGTAGTCACTAGCTTCCG

Reference-based Alignment (Mapping)

► Matching of sequencing reads to a reference sequence.

Reference

ATTTCGGCTAGCTTGCAGCTTCATGATGGGCCA	AATTITCTAGAGTAGTCACTAGCTICCG
ATTCGGCTAGCTIGCA	AGTCACTAGCTTCCG
TICGGCTAGCTIGCAGC	GAGTAGTCACTAGCTTCCG
GCTTCATGATGGGCCA	AATTTIC
AGCIICAIGAIGGGCCA	AATTTT
CCA	AATTTTCTAGAGTAGTCACTAGCTTCCG
AGCIICAIGAIGGGCCA	AATTTT
AGCTTCATGATGGGCCA	AATTTT
AGCIICAIGAIGGGCCA	AATTTT

Depth of Coverage

The number of independent sequencing reads that a nucleotide is sequenced.

Reference

Variant/Mismatch Single Nucleotide Polymorphism (SNP)

Genome Assembly

Matching reads together based off sequence similarity to build a larger sequence.

ATTICGGCTAGCTIGCA TICGGCTAGCTIGCAGC TIGCAGCTICATGATGGGCCAAATTTT CCAAATTITCTAGAGTAGTCACTAGCTICCG

ATTICGGCTAGCTIGCAGCTICATGATGGGCCAAATTTICTAGAGTAGTCACTAGCTICCG

Consensus Sequence

Sequence that includes the most common nucleotide at each position after reference guided alignment or assembly.

Reference

ATTICGGC	AGCTIGCAGCTICATGAT	GGGCCAAATTTC	IAGAGTAGTCACTAGCTTC	CG
ATTICGGAI	AGCIIGCA		AGICACIAGCCI	CCG
TICGGAI	AGCIIGCAGC		GAGTAGTCACTAGCC	CCG
	GCTTCATGT	GGCCA <mark>C</mark> ATTTTC		
	AGCITCAIGAI	GGGCCAAATTT		
		CCAAATTTC	IAGAGTAGTCACTAGC <mark>C</mark> T(CCG
	AGCTTCATGAT	GGGCCAAATTTT		
	AGCITCAIGAI	GGGCCAAATTT		
Consensus	AGCITCAIGAI	GGGCCAAATTT		
			TACACTACTCACTACC <mark>C</mark> T/	200

ATTICGG<mark>A</mark>TAGCTIGCAGCTICATGATGGGCCAAATTITCTAGAGTAGTCACTAGC<mark>C</mark>TCCG

Sample Types

Sample Type- Pure Culture/Isolate

- High Concentration of DNA/RNA
 - > Suitable for protocols that require high input amounts (> μ g)
- High Quality DNA/RNA
 - Suitable for long sequencing read protocols (ONT & PacBio)
- Isolation Protocols May Need to Consider Hard to Lyse Bacteria
 - Bead-bashing/stringent lysis buffers
- Viral Cultures
 - Mixture of cells & virus (typically significantly higher viral load than clinical samples)
 - Cell culture supernatants may contain more virus and less cells

Shotgun Whole Genome Sequencing

Bioinformatic Assembly of Bacteria

Cultured Isolate Genome of ~4.9 Mbp

Sample Type- Clinical Sample

Types

- Nasal/Oral Swab, Stool, Blood, Puss, CSF, Urine, Sputum
- Mixed Sample
 - Includes human cells (DNA/RNA), host microbial flora, pathogen
- Inhibitors
 - Can include inhibitors of nucleic acid Isolation & PCR (e.g. High salt concentration in urine)
 - Consider what sample is being stored in (VTM, lysis buffer, proprietary reagents)
- Variable Amounts of Pathogen
 - Sampling inconsistencies
 - Location of infection

Sample Type- Environmental

- Types
 - Swabs
 - Hospital equipment
 - Soil or water
 - Food
 - Contaminated, food-borne illness
 - Wastewater
 - Surveillance
 - Veterinary
 - Animal (domesticated or wild)

Mixed samples

- Multiple types of bacterial, fungal, human, animal, virus may be present
- Can include inhibitors of nucleic acid Isolation & PCR
- May be hard to lyse

Shotgun Metagenomic Sequencing

Bioinformatic Assembly of Each Bacteria

Genome Coverage Calculations

4.9 Mbp Genome Pure Isolate 2x150bp 100X Average Coverage 2% Duplications

	MiSeq	MiSeq	NextSeq 2000	NextSeq 2000	NextSeq 2000
Reagents	v2	v3	P1	P2	Р3
Read Length	2x150	2x150	2x150	2x150	2x150
Samples/run	9	15	60	240	720
Cost	\$1,200	\$1,750	\$1,250	\$3,630	\$6,150
Cost/sample	\$133.33	\$116.67	\$20.83	\$15.13	\$8.54

Mixed metagenomic samples will require more sequencing

https://support.illumina.com/downloads/sequencing_coverage_calculator.html

Nucleic Acid Isolation

DNA & RNA Isolation

Methods

- Organic
 - Phenol-Chloroform
- Column-based
 - Qiagen, Zymo
- Bead-Based
 - ThermoFisher Dynabeads, MagMax
- Available from a variety of manufacturers with different capacities & elution volumes

Considerations

- DNA
 - Fragmentation
 - Lysis of bacterial cells
- **RNA**
 - Size (miRNA)
 - Fragmentation
 - DNA contamination (DNAse treatment)
 - Carrier RNA (total RNA & target enrichment)

Organic DNA/RNA Isolation

Altayari W. (2016) DNA Extraction: Organic and Solid-Phase. In: Goodwin W. (eds) Forensic DNA Typing Protocols. Methods in Molecular Biology, vol 1420. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3597-0_5

Column-Based DNA/RNA Isolation

Lee, H., Na, W., Park, C. et al. Sci Rep 8, 5467 (2018).

Bead-Based Isolation

Magnetic

https://fairbiotech.com/

DNA/RNA Quality Control

- Concentration
 - Absorption- Nanodrop
 - Fluorometric- Qubit
 - Electrophoresis- Bioanaylzer

Size

- **Electrophoresis- Gel or Bioanaylzer**
- Molarity
 - Size + concentration
- Integrity
 - RNA integrity number (RIN) Bioanalyzer

Nanodrop

SPECTROPHOTOMETRY

https://upcvmda-pl480.weebly.com/educational-articles/

Qubit- Fluorometric Quantification

Qubit- Fluorometric Quantification

https://i.pinimg.com/originals/d6/53/eb/d653eb942e2df672172c0c6b54fa2f70.png

Bioanalyzer- Agilent

Chip-based gel electrophoresis

ectrophoresis File Run Summary

L 1

2

3 4 5 6 7

.....

10 11 12

9

8

15 100

2100 Expert (B.02.09.SI720)

300

500 850 [bp]

15 100 200 300

Sample 6

300

300

300

Printed: 12/16/2020 11:35:09 AM

Sample 12

Sample 9

15 100

15 100

500 850 [bp]

15 100

300

© Copyright 2003 - 2017 Agilent Technologies, Inc.

500

500 850 [bp]

500 850 [bp

Genomic DNA

Standards in Genomic Sciences. 2017. 12. 27. 10.1186/s40793-017-0239-1.

RNA Integrity Number- RIN

- The RNA integrity number (RIN) is a tool designed to help scientists estimate the integrity of total RNA samples.
- The RIN extension automatically assigns an integrity number to a eukaryote total RNA sample analyzed on the 2100 Bioanalyzer system.
- Sample integrity determined by the ratio of the ribosomal bands & the entire electrophoretic trace of the RNA sample, including the presence or absence of degradation products.

RNA Integrity Number- RIN

2100 Expert Software User Guide

Library Prep

- https://www.illumina.com/techniques/sequencing/ngs-library-prep.html
- https://www.illumina.com/library-prep-array-kit-selector.html

Library preparation kits for diverse methods

Ask virtually any question related to the genome, transcriptome, or epigenome of any organism with NGS library prep kits optimized for Illumina sequencers

https://store.nanoporetech.com/us/sample-prep.html

Purification & Size Selection

Purification & Size Selection Methods

- Column-based Purification
 - Removal of nucleotides, enzymes, buffers
- Gel Purification
 - Extract and purify DNA from an agarose gel of a specific size
- Bead (SPRI AMPure XP, Axygen AxyPrep MAG)
 - SPRI technology uses paramagnetic beads to selectively bind nucleic acids by type and size, and are used for high-performance isolation, purification, and cleanup protocols.
- Pippin Prep- Sage Science
 - Automated gel-cassette size selection

PCR or other enzymatic reaction or solubilized gel slice Vacuum Vacuum

https://www.qiagen.com/

Column-based PCR Clean Up

	QIAquick PCR Purification	QIAquick Nucleotide Removal	QIAquick Gel Extraction	
Maximum binding capacity	10 hð	10 µg	10 µg	
Maximum weight of gel slice	-	-	400 mg	
Minimum elution volume	30 µl	30 µl	30 µl	
Capacity of column reservoir	اµ 008	اµ 008	800 µl	
Typical recoveries				
Recovery of DNA	90–95% (100 bp – 10 kb)	80–95% (40 bp – 10 kb)	70–80% (70 bp – 10 kb)	
Recovery of oligonucleotides (17–40mers)	0	60–80%	10–20%	
Recovered				
Oligonucleotides	-	17–40mers	-	
dsDNA	100 bp – 10 kb	40 bp – 10 kb	70 bp – 10 kb	
Removed				
<10mers	YES	YES	YES	
17–40mers	YES	No	No	

Table 1. QIAquick DNA cleanup guide

	From solutions	From solutions					
	QIAquick PCR Purification Kit	QIAquick Nucleotide Removal Kit	QIAquick Gel Extraction Kit	QIAquick Gel Extraction Kit			
Alkaline phosphatase	YES	YES	YES	YES			
cDNA synthesis	YES	No	No	YES			
DNase, nuclease digestion	YES	YES	YES	YES			
Kinase							
DNA fragments	YES	YES	YES	YES			
Oligonucleotides	No	YES	No	No			
Ligation	YES	YES	YES	YES			
Nick translation	YES	YES	YES	YES			
PCR							
	YES	No	No	YES			
Random priming	YES	YES	YES	YES			
Restriction digestion	YES	YES	YES	YES			
Tailing							
DNA fragments	YES	YES	YES	YES			
Oligonucleotides	No	YES	No	No			

Bead-based PCR Clean up

SPRI AMPure XP PCR Clean-Up (1.8-2.0x volume beads:PCR product)

Figure 1 Workflow for PCR Purification

Gel Purification & Size Selection

- Agarose gel electrophoresis with DNA ladder
- Cut out desired size range
- Significant loss of DNA/library

QIAquick and MinElute Procedure

PCR or other

enzymatic reaction or

solubilized gel slice

Bead-based Size Selection

- SPRI AMPure XP (Axygen AxyPrep MAG)
 - Ratio of volume of beads to volume of suspended DNA/library
 - As a general rule, increasing the ratio of SPRIselect volume to sample volume will increase the efficiency of binding smaller fragments.
 - Can complete 2 captures to select size

Bead-based Size Selection- Left Side

Left Side Size Selection Process Overview

Bead-based Size Selection- Left Side

Left Side Size Selection- defines the new start point of the sample's size distribution

Figure 1 Agilent High Sensitivity DNA chip Electropherogram.

Bead-based Size Selection- Right Side

Right Side Size Selection Process Overview

Bead-based Size Selection- Right Side

Right Side Size Selection- defines the new end point of the sample's size distribution

Double-Sided Size Selection

Left Side Size Selection- defines the new start point of the sample's size distribution

> Complete both left & right side selection

Right Side Size Selection- defines the new end point of the sample's size distribution

Pippen Prep- Sage Sciences

- Cassette-based gel electrophoresis.
- Target sizes or ranges of sizes are entered in software, and fractions are collected in buffer.
- Up to 5 samples per gel cassette may be run, with no possibility of cross contamination.

Requires expensive machine & reagents.

https://sagescience.com/products/pippin-prep/

Normalization

Sample/Library Normalization

Non-Normalized Libraries

Normalized Libraries

https://upcvmda-pl480.weebly.com/educational-articles/

Sample/Library Normalization

- Mix equal amounts by concentration
 - Assumes similar size
- Mix equal amounts by molarity
 - Requires size determination
- ► qPCR
 - Requires standard curve that is a library of similar type to protocol (insert size, PCR vs fragmented DNA)
- Bead-based
 - Saturation of DNA binding beads

Sequencing Reads per Sample

Poor Normalization

% Reads Identified (PF) Per Index

Good Normalization

% Reads Identified (PF) Per Index

Qubit Normalization

- Same library prep
- Similar starting concentration
- Determine concentration by Qubit
- Pool 25 ng of each library together

Sample	Concentration (ng/ul)	Desired Amount (ng)	Volume (ul)
A1	5.8	25	4.31
A2	11.4	25	2.19
A3	2.6	25	9.62
A4	20.1	25	1.24
A5	14.5	25	1.72

Desired amount (ng)/Concentration (ng/ μ l)= Volume to Pool

Bioanalyzer

[bo]											-	-	-	
1-1-1	1		CN.	60	4	LO LO	D	P	00	S.	H	=	14	
	0	e o	0	e a	0	0	0	0	0	0	ω.	e cu	e a	
-ado	-e	문	무	2	2	문	8	문	문	문	ā	ā	ā	
	틆	틆	틆	틆	틆	E	틆	듦	틆	E	E	E		
		U.S.	U.S.	US.	U.S.	uñ.	UŠ.	U.S.	U.S.	uñ.	3	3	3	

qPCR Normalization

- Six pre-diluted DNA Standards and appropriately diluted NGS libraries are amplified using platform-specific qPCR primers that target adapter sequences.
- The average Cq value for each DNA Standard is plotted against its known concentration to generate a standard curve.
- The standard curve is used to convert the average Cq values for diluted libraries to concentration, from which the working concentration of each library is calculated.

https://sequencing.roche.com/en/products-solutions/products/sample-preparation/library-quantification/kapa-library-quantification-kits.html

qPCR Normalization

Final library concentration

Total assigned reads in lane

Bead Normalization

- DNA binding beads are mixed into a library with different concentrations of DNA.
- Equal amount of beads/sample.
- Beads are saturated with maximum DNA binding capacity.
- Beads captured with magnet & non-bound DNA library moved in supernatant.

https://upcvmda-pl480.weebly.com/educational-articles/

Bead-Linked Transposome Normalization

А

Library Quality Control

Library Quality Control

- Ensure successful generation of library
- Check for Adapter/PCR Primer Dimers
- Determine library size & accurate molarity

Verify Completed Library

Failed Libraries with Adapter/PCR Dimers

Completed Libraries

Summary

- Sample type can impact the choice of sequencing library prep and sequencing method.
- DNA/RNA isolation methods may impact sequence quality, however, most methods are sufficient for NGS applications.
- Purification & size selection of sequencing libraries improves sequencing quality.
- Library normalization ensures that each sample in a pool of sequencing libraries receives a similar amount of sequencing.
- For optimal sequencing results and troubleshooting library prep protocols, libraries should be checked for quality prior to sequencing.