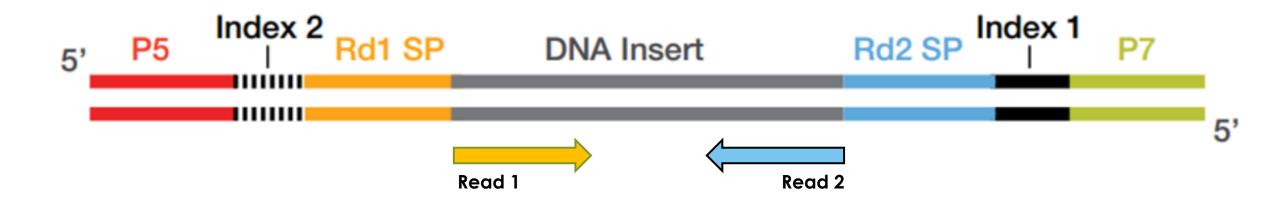
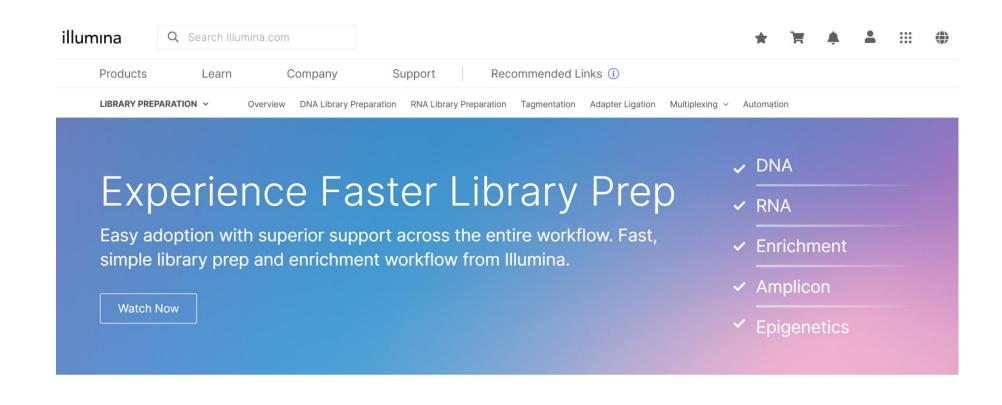
3- Illumina Library Prep & Sequencing


Special focus on SARS-CoV-2 genome sequencing protocols

DARYL B. DOMMAN, PHD

Illumina Sequencing



Illumina Library Structure

Rd1 SP- Read 1 Sequencing Primer Rd2 SP- Read 2 Sequencing Primer

https://www.illumina.com/techniques/sequencing/ngs-library-prep.html

Choosing a Tagmentation Kit for Your Experiment

Applications	Product	Benefits
16s rRNA Sequencing, Amplicon Sequencing, <i>De Novo</i> Sequencing, Shotgun Sequencing, Whole-Genome Sequencing	Nextera XT	•Optimized for research on small genomes, PCR amplicons, and plasmids
Amplicon Sequencing, <i>De Novo</i> Sequencing, Shotgun Sequencing, Whole-Genome Sequencing	Illumina DNA Prep	•No library quantification needed
Human Whole-Genome Sequencing	Illumina DNA PCR-Free	Bead-linked transposome technologyAvoid PCR duplicatesNo library quantification needed

Nextera XT

Assay Time

Hands-On Time

Mechanism of Action

Multiplexing

Input Quantity

Species Category

Species Details

Target Insert Size

Description

Specialized Sample Types

Technology

Method

System Compatibility

Automation Capability

Variant Class

Nucleic Acid Type

~5.5 hours from DNA extraction to normalized library. (Library prep time: ~90 minutes).

15 minutes

Enzymatic fragmentation

Up to 384 uniquely indexed samples may be pooled and sequenced together.

1 ng DNA

Any Species, Nematode, Plant, Zebrafish, Fungal, Mouse, Mammalian, Virus, Bacteria, Drosophila, Rat,

Human, Yeast

Compatible with any species

300 bp-1.5 kb

Fast library prep optimized for research on small genomes, PCR amplicons, and plasmids.

Low-Input Samples, Not FFPE-Compatible, Single Cells

Sequencing

16s rRNA Sequencing, Amplicon Sequencing, De Novo Sequencing, Shotgun Sequencing, Whole-

Genome Sequencing

iSeq 100, MiniSeq, MiSeq, NextSeq 1000, NextSeq 2000, NextSeq 500, NextSeq 550

Liquid Handling Robots

Single Nucleotide Polymorphisms (SNPs), Structural Variants

DNA

DNA Prep

~3-4 hours (from DNA extraction to normalized library) **Assay Time**

Hands-On Time 1-1.5 hours

Input Quantity Small genomes (e.g. microbial): 1-500 ng DNA. Large genomes (e.g. human): 100-500 ng DNA.

Mechanism of Action

Bead-linked transposome Up to 384 unique dual (UD) combinations and 96 combinatorial dual (CD) combinations Multiplexing

Species Details

Compatible with any species

System Compatibility

HiSea 2500, HiSea 3000, HiSea 4000, HiSea X Five, HiSea X Ten, iSea 100, MiniSea, MiSea, MiSeaDx in Research Mode, NextSea

1000, NextSeq 2000, NextSeq 550, NextSeq 550Dx in Research Mode, NovaSeq 6000

Specialized Sample Types

Sample Type Details

Blood, Not FFPE-Validated, Saliva

Supports multiple sample types, including genomic DNA, blood (and dried blood spots), saliva, PCR amplicons, plasmids, and

bacterial colonies

Species Category

Any Species, Human, Mouse, Rat, Plant, Drosophila, Virus, Yeast, Zebrafish, Bacteria, Mammalian, Nematode

Description

A fast, flexible workflow for a wide range of research applications and sample types, from human to microbial whole-genome

sequencing and more.

Target Insert Size

Technology

Seauencina

Method

Amplicon Sequencing, De Novo Sequencing, Shotgun Sequencing, Whole-Genome Sequencing

Chromosomal Abnormalities, Copy Number Variants (CNVs), Gene Fusions, Germline Variants, Insertions-Deletions (indels), Loss of Variant Class

Heterozygosity (LOH), Single Nucleotide Polymorphisms (SNPs), Somatic Variants, Structural Variants

Automation Capability

Nucleic Acid Type

Liquid Handling Robots

DNA

~350bp

Choosing Sequencing Reagents

Illumina MiSeq V2 vs V3 Reagents

- Cluster Density
 - V2- 467-583 k/mm2
 - V3- 727-827 k/mm2

- Read Length
 - V2- 2x25bp, 2x150bp, 2x250bp
 - ▶ V3- 2x75bp or 2x300bp

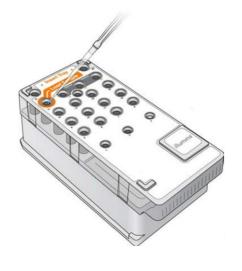
- Total Output
 - ► V2- 24-30 Million Paired Reads
 - ▶ V3- 44-50 Million Paired Reads

- Sequencing Time
 - ▶ V2- 5.5-39 hours
 - **V3- 21-56 hours**

Illumina MiSeq Specifications

Table 1: MiSeq System performance parameters

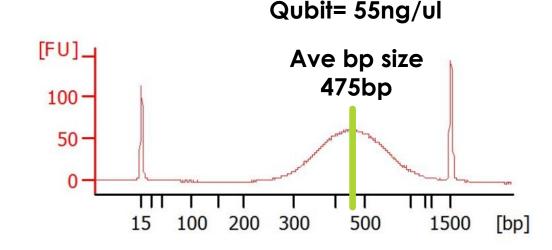
Read length	Total time ^a	Output	Quality scores ^b	Single reads ^c	Paired-end reads ^c
MiSeq Reagent Kit v2					
2 × 25 bp	~5.5 hours	750-850 Mb	> 90% bases higher than Q30		
2 × 150 bp	~24 hours	4.5-5.1 Gb	> 80% bases higher than Q30	12-15M	24-30M
2 × 250 bp	~39 hours	7.5-8.5 Gb	> 75% bases higher than Q30		
MiSeq Reagent Kit v3					
2 × 75 bp	~21 hours	3.3-3.8 Gb	> 85% bases higher than Q30	00.0514	44.5014
2 × 300 bp	~56 hours	13.2-15 Gb	> 70% bases higher than Q30	22-25M	44-50M
MiSeq Reagent Kit v2	Micro				
2 × 150 bp	~19 hours	1.2 Gb		4M	8M
MiSeq Reagent Kit v2	Nano				
2 × 150 bp	~17 hours	300 Mb		11.4	214
2 × 250 bp	~28 hours	500 Mb		1M	2M


Illumina Product Numbers

Ordering information

Product	Catalog no.
MiSeq System	SY-410-1003
MiSeq Reagent Kit v2 (50-cycles) ^a	MS-102-2001
MiSeq Reagent Kit v2 (300-cycles) ^{a,b}	MS-102-2002
MiSeq Reagent Kit v2 (500-cycles) ^{a,b}	MS-102-2003
MiSeq Reagent Kit v3 (150-cycle) ^b	MS-102-3001
MiSeq Reagent Kit v3 (600-cycle) ^b	MS-102-3003
MiSeq Reagent Micro Kit v2 (300-cycles) ^b	MS-103-1002
MiSeq Reagent Nano Kit v2 (300-cycles) ^b	MS-103-1001
MiSeq Reagent Nano Kit v2 (500-cycles)	MS-103-1003

Loading Illumina NGS Library

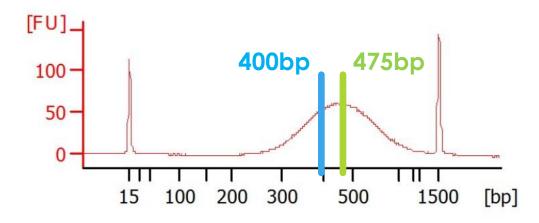


Determine Molarity

Standard Normalization Calculations

 After running the libraries on the Qubit and Fragment Analyzer, the following formula was used to calculate the nM concentration of each library:

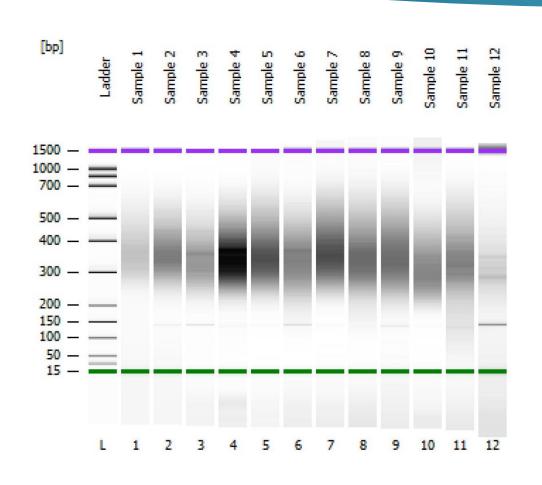
 $nM = ((ng/ul)/ (avg bp size \times 660 g/mol))^* 1,000,000$

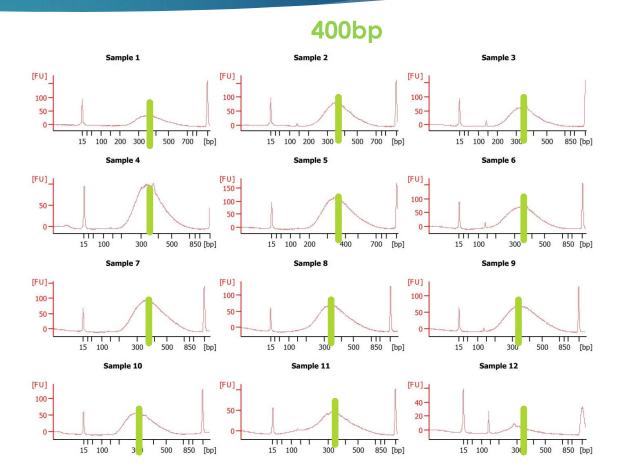


$$nM = ((55 \text{ng/ul})/(475 \text{bp*660g/mol})) * 1,000,000$$

$$nM = 175.4$$

Determining Molarity


<u>Number</u>	<u>Sample</u>	Concentration (ng/ul)	Fragment Size	<u>nM</u>
1	Virus_RNAseq_Pool_2	55	475	175.4
2	Virus_RNAseq_Pool_3	10	475	31.9
3	Virus_RNAseq_Pool_4	10	400	37.9



Generate 4nM Library

						<u>Library to</u>	
<u>Number</u>	<u>Sample</u>	Concentration (ng/ul)	Fragment Size	<u>nM</u>	Total ul of stock	make 4 nM stock	TE Buffer
		<u>(11g/ u1/</u>	<u> </u>		<u> 3tock</u>	(ul)	
1	Virus_RNAseq_Pool_2	55	475	175.4	100	2.28	97.72
2	Virus_RNAseq_Pool_3	10	475	31.9	50	6.27	43.73
3	Virus_RNAseq_Pool_4	10	400	37.9	50	5.28	44.72

Determine Average bp Size

Denaturation

Denature a 4 nM Library

- 1 Combine the following volumes in a microcentrifuge tube.
 - 4 nM library (5 μl)
 - 0.2 N NaOH (5 μl)
- 2 Vortex briefly and then centrifuge at $280 \times g$ for 1 minute.
- 3 Incubate at room temperature for 5 minutes.
- 4 Add 990 µl prechilled HT1 to the tube containing denatured library. The result is 1 ml of a 20 pM denatured library.

Dilute Denatured 20 pM Library

1 Dilute to the desired concentration using the following volumes.

Concentration	6 pM	8 pM	10 pM	12 pM	15 pM	20 pM
20 pM library	180 μΙ	240 µl	300 µl	360 µl	450 µl	600 µl
Prechilled HT1	420 µl	360 µl	300 µl	240 μΙ	150 μΙ	0 μΙ

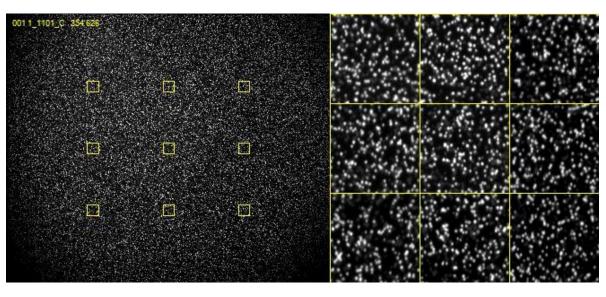
MiSeq System-Denature and Dilute Libraries Guide Document # 15039740 v10

Loading Concentration

Loading Volume and Concentration

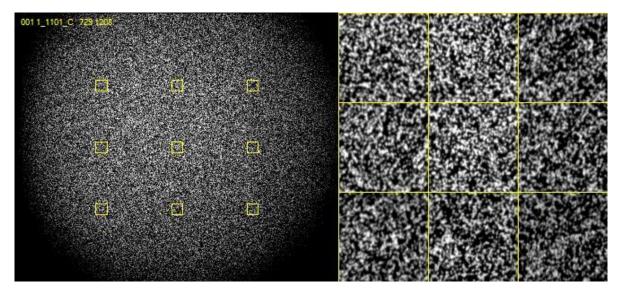
This procedure denatures and dilutes libraries to a final volume of 600 µl. The recommended loading concentration varies depending on the version of MiSeq Reagent Kit used for the sequencing run. In practice, loading concentration can vary depending on library preparation and quantification methods.

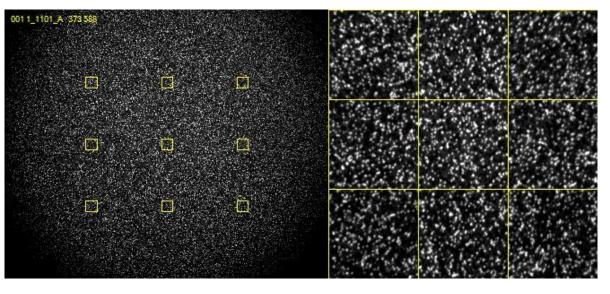
Chemistry	Recommended Final Loading Concentration
MiSeq Reagent Kit v3	Supports 6-20 pM loading concentration. Requires at least a 4 nM library before diluting and denaturing.
MiSeq Reagent Kit v2	Supports 6-10 pM loading concentration.


MiSeq SystemDenature and Dilute
Libraries Guide
Document # 15039740 v10

Optimal Clustering

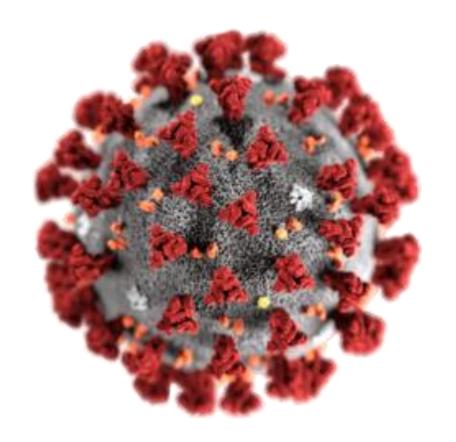
Under Clustered


Optimal Clustered

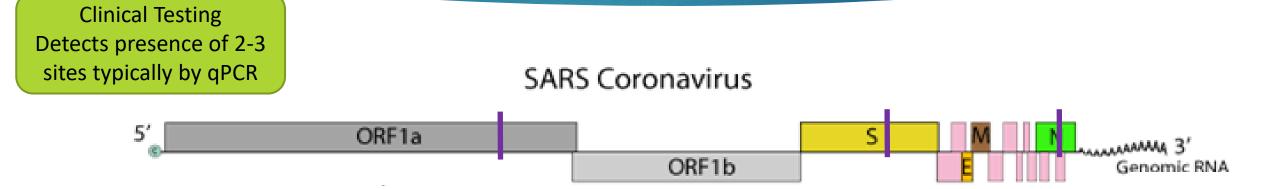

6 pM 10 pM

Optimal Clustering

Over Clustered



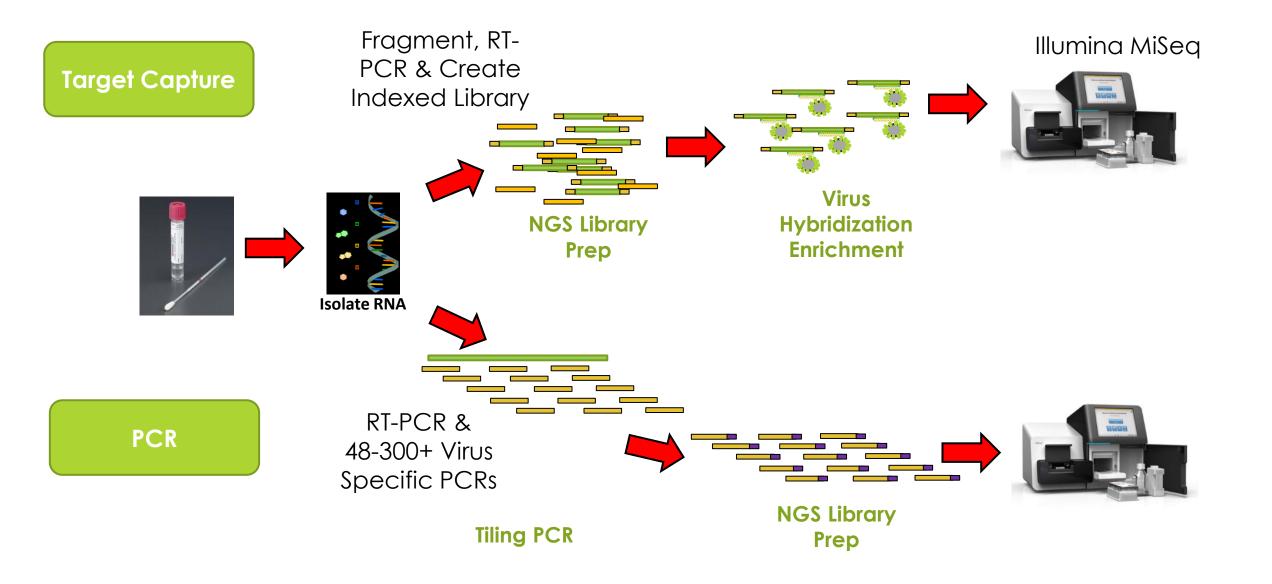
Optimal Clustered



14 pM 12 pM

SARS-CoV-2 Genome Sequencing

Clinical Diagnostics vs Genome Sequencing


Detects and generates sequence data for entire genome

Whole genomes are the highest resolution data

SARS-CoV-2 Sequencing Considerations

- ▶ If Ct values are available prioritize values less than 30
- Use fresh properly stored VTM and/or RNA
 - Room temp <24 hrs</p>
 - ▶ 4 degrees <1 week
 - -20 degrees upto 1 year
- Avoid repeated freeze-thaw of VTM and/or isolated RNA

Next-Generation Sequencing of SARS-CoV-2 Genomes

Illumina Provided SARS-CoV-2 Protocols

- COVIDSeq
 - PCR & Tagmentation
 - Research Use Only (RUO) & USA FDA Emergency Use Authorization
- AmpliSEQ
 - PCR & Restriction Digestion & Adapter Ligation
- Respiratory Virus Oligo Panel v2 (RVOP)
 - Target hybridization capture

Other Manufacturer Protocols for Illumina

- Qiagen
 - QIAseq DIRECT SARS-CoV-2 Kit (PCR)
- ► IDT/SWIFT
 - xGen Amplification Panel (PCR) & xGen Hybridization Probes (Target Capture)
- Roche/Kapa
 - KAPA SARS-CoV-2 Target Enrichment Panel by Roche (Target Capture)

PCR Primer Sets

- ARTIC
 - V3- 400bp amplicons (98 primers pairs)
 - V4- Updated for optimal coverage of Delta- Illumina COVIDSeq
 - ▶ V4.1- Includes primers optimized for Omicron
 - Midnight- 1,200bp
 - Omicron dropout of amplicon 28, possibly amplicon 2
- Manufacturer Specific
 - Qiagen, IDT

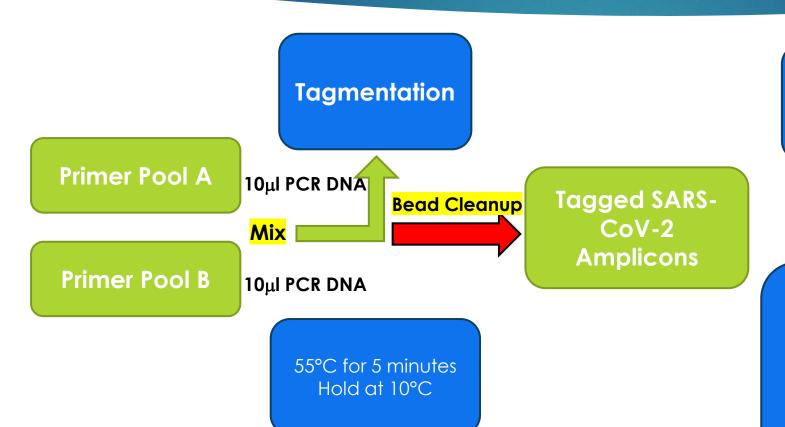
Illumina COVIDSeq

Reverse Transcribe Random Hexamers

RNA

8.5 μl RNA

25°C for 5 minutes 50°C for 10 minutes 80°C for 5 minutes Single Stranded cDNA


98°C for 3 minutes 35 cycles of: 98°C for 15 seconds 63°C for 5 minutes Hold at 4°C

PCR

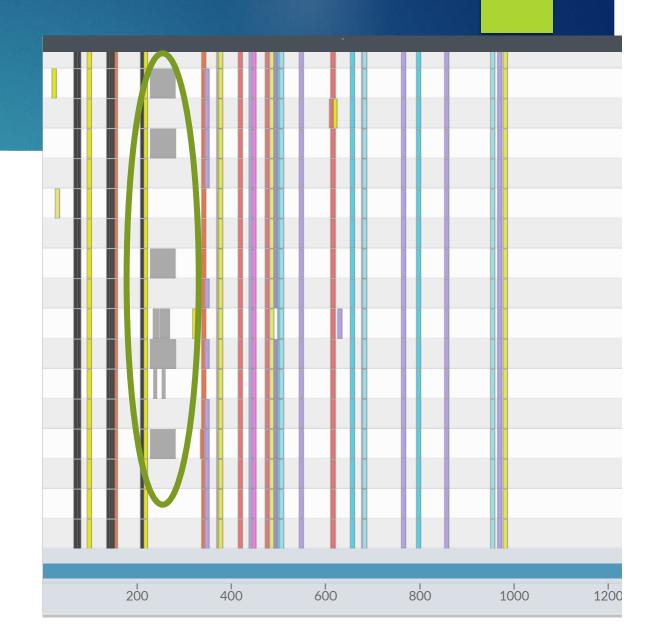
Primer Pool A

Primer Pool B

Illumina COVIDSeq

PCR Index Primers (IDT UDI)

> Pool & Cleanup Libraries


72°C for 3 minutes 98°C for 3 minutes 7 cycles of: 98°C for 20 seconds 60°C for 30 seconds 72°C for 1 minute 72°C for 3 minutes Hold at 10°C

Amplicon Dropouts

Amplicon Dropouts

- Due to mismatches in primer sequence and genome sequence of virus
- More problematic in low viral load samples
- If amplicon contains lineage defining mutations, may be incorrectly classified

Illumina COVIDSeq Considerations

- ► Illumina recommends ~1 million reads/samples
 - 48 samples/MiSeq
 - 384 samples/NextSeq 1000/2000
- Primer sets can be changed
 - Ships with ARTIC v4
 - ► ARTIC v4.1 for better Omicron coverage
 - Midnight?, may depend on read length used for sequencing
- Automated solutions available

Illumina AmpliSeq

- > 2-pool design, containing 247 amplicons/primer pairs
 - ▶ (242 unique amplicons (Pool 1: 125 amplicon, Pool 2: 122 amplicons):
 - ≥ 237 viral specific SARS-CoV-2 targets and 5 human gene expression controls) ranging from 125-275 bps in length that covers >99% of the viral genome and all potential serotypes of the virus.
- Higher Cost/Sample than COVIDSeq

Illumina AmpliSeq

Safe Stopping Point

Safe Stopping Point

Safe Stopping Point

Safe Stopping Point

Quantify and Dilute RNA

Hands-on: 10 minutes Total: 10 minutes

Reagents: Nuclease-Free Water

Reverse Transcribe RNA

Hands-on: 10 minutes Total: 50 minutes

Reagents: 5X AmpliSeq cDNA Reaction Mix, 10X AmpliSeq RT Enzyme Mix, Nuclease-Free Water

3 Amplify Targets

Hands-on: 15 minutes Total: 1.5-4 hours

Reagents: AmpliSeq Custom RNA Panel, 5X AmpliSeq HiFi Mix, Nuclease-Free Water

Partially Digest Amplicons

Hands-on: 10 minutes
Total: 50 minutes

Reagents: FuPa Reagent

5 Ligate Indexes

Hands-on: 15 minutes Total: 55 minutes

Reagents: DNA Ligase, AmpliSeq CD Indexes, Switch Solution

6 Clean Up Library

Hands-on: 15 minutes
Total: 25 minutes

Reagents: 70% EtOH, AMPure XP Beads

Illumina AmpliSeq- Cont.

Standard Workflow Amplify Library Hands-on: 10 minutes Total: 45 minutes Reagents: 1X Library Amp Mix, 10X Library Amp Primers Safe Stopping Point Perform Second Cleanup Hands-on: 15 minutes Total: 35 minutes Reagents: 70% EtOH, AMPure XP Beads, Low TE Safe Stopping Point Check Libraries Total: 1-1.5 hours Dilute to Starting Concentration Hands-on: 20 minutes Total: 20 minutes

Reagents: Low TE

Equalizer Workflow

7 Amplify Library
Hands-on: 10 minutes

Total: 45 minutes

Reagents: 1X Library Amp Mix, 10X Library Amp Primers

8 Wash Equalizer Beads

Hands-on: 5 minutes Total: 5 minutes

Reagents: Equalizer Wash Buffer, Equalizer Beads

Perform Capture and Cleanup

Hands-on: 10 minutes Total: 10 minutes

Reagents: Equalizer Capture, Equalizer Wash Buffer, Equalizer Beads

10 Elute Library

Hands-on: 15 minutes Total: 15 minutes

Reagents: Equalizer Elution Buffer

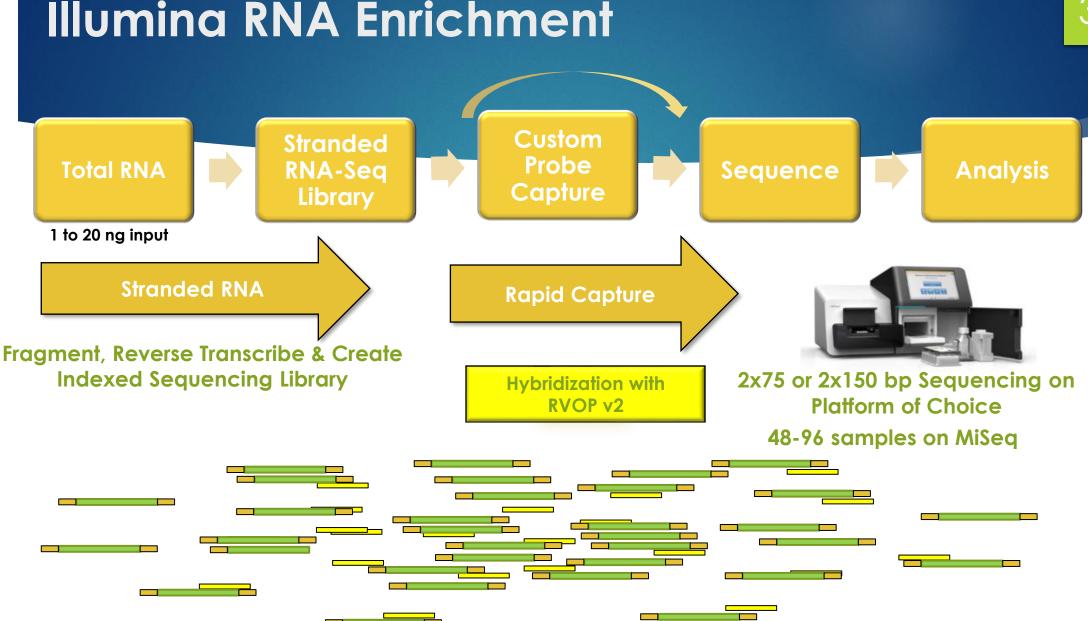
AmpliSeq Considerations

- Uses AmpliSeq CD Indexes Set A, B, C, or D plate (96 indexes, 96 samples) or AmpliSeq UD Indexes for Illumina (24 Indexes, 24 Samples),
 - Limited capacity to multiplex for higher output sequencers, NextSeq 2000 or NovaSeq
- Illumina recommends 2x151bp sequencing
- MiSeq v3 (600 cycle kit) sequencing reagents loaded at 7-9pM

Target Capture for Virus Genome Sequencing

Method

Comprehensive viral enrichment enables sensitive respiratory virus genomic identification and analysis by next generation sequencing

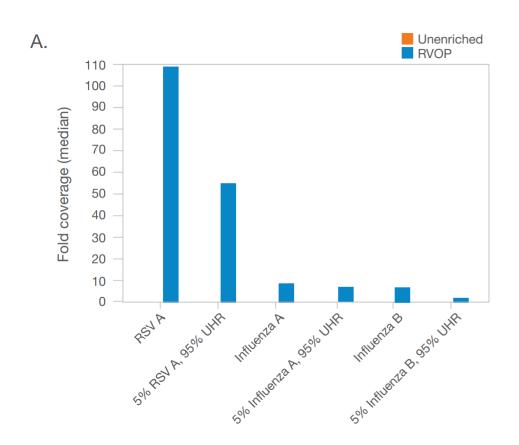

Brigid M. O'Flaherty, ^{1,2,6} Yan Li, ^{1,6} Ying Tao, ¹ Clinton R. Paden, ^{1,2} Krista Queen, ^{1,2} Jing Zhang, ^{1,3} Darrell L. Dinwiddie, ⁴ Stephen M. Gross, ⁵ Gary P. Schroth, ⁵ and Suxiang Tong ¹

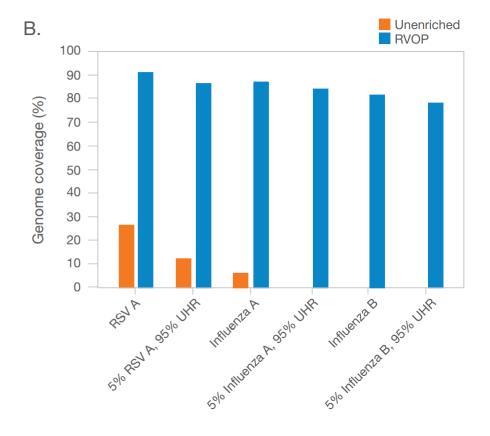
¹Centers for Disease Control and Prevention, NCIRD, DVD, Atlanta, Georgia 30329, USA; ²Oak Ridge Institute for Science Education, Oak Ridge, Tennessee 37830, USA; ³IHRC Incorporated, Atlanta, Georgia 30346, USA; ⁴Department of Pediatrics, Clinical Translational Science Center, University of New Mexico, Albuquerque, New Mexico 87131, USA; ⁵Illumina, Incorporated, San Diego, California 92122, USA

Genome Research

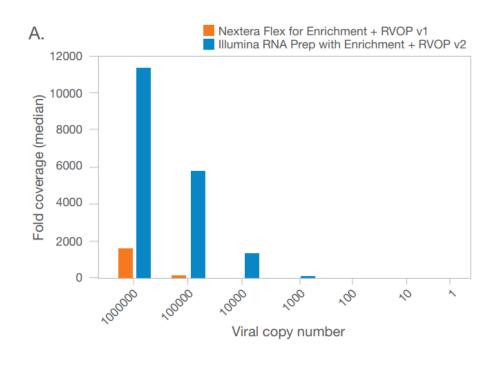
www.genome.org

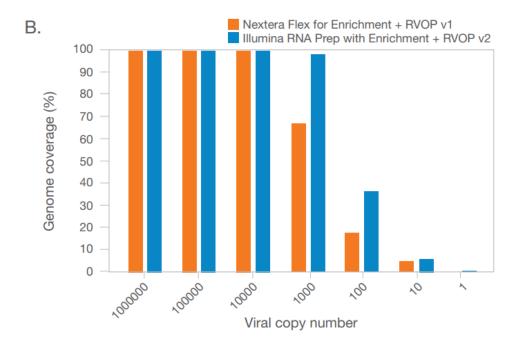
Illuming RNA Enrichment

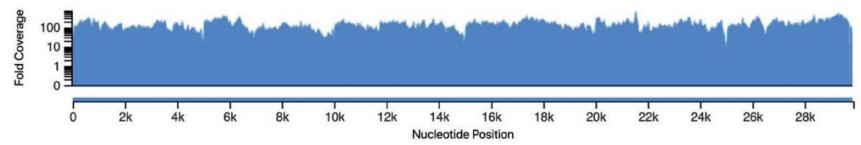

Illumina RNA Prep with Enrichment

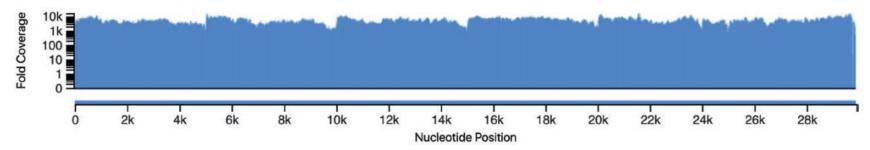

Table 3: Viruses targeted by the Respiratory Virus Oligos Panel

Human coronavirus 229E	Human parainfluenza virus 1
Human coronavirus NL63	Human parainfluenza virus 2
Human coronavirus OC43	Human parainfluenza virus 3
Human coronavirus HKU1	Human parainfluenza virus 4a
SARS-CoV-2	Human metapneumovirus (CAN97-83)
Human adenovirus B1	Respiratory syncytial virus (type A)
Human adenovirus C2	Human Respiratory syncytial virus 9320 (type B)
Human adenovirus E4	Influenza A virus (A/Puerto Rico/8/1934(H1N1))
Human bocavirus 1 (Primate bocaparvovirus 1 isolate st2)	Influenza A virus (A/ Korea/426/1968(H2N2))
Human bocavirus 2c PK isolate PK-5510	Influenza A virus (A/New York/392/2004(H3N2))
Human bocavirus 3	Influenza A virus (A/goose/ Guangdong/1/1996(H5N1))
Human bocavirus 4 NI strain HBoV4- NI-385	Influenza A virus (A/Zhejiang/DTID- ZJU01/2013(H7N9))


KI polyomavirus Stockholm 60	Influenza A virus (A/Hong Kong/1073/99(H9N2))
WU Polyomavirus	Influenza A virus (A/ Texas/50/2012(H3N2))
Human parechovirus type 1 PicoBank/HPeV1/a	Influenza A virus (A/ Michigan/45/2015(H1N1))
Human parechovirus 6	Influenza B virus (B/Lee/1940)
Human rhinovirus A89	Influenza B virus (B/ Wisconsin/01/2010)
Human rhinovirus C (strain 024)	Influenza B virus (B/ Brisbane/60/2008)
Human rhinovirus B14	Influenza B virus (B/ Colorado/06/2017)
Human enterovirus C104 strain: AK11	Influenza B virus (B/ Washington/02/2019)
Human enterovirus C109 isolate NICA08-4327	Human control genes


Virus Enrichment


SARS-CoV-2 Enrichment



SARS-CoV-2 Enrichment

SARS-CoV-2 10⁵ copies, Illumina RNA Prep with Enrichment + RVOP v2

Considerations for Enrichment

- ► Can be used for SARS-CoV-2 and additional respiratory viruses
- Less susceptible to virus mutations
- Higher costs & lower throughput

Questions?

